Skip to content

Completeness

Completeness(dataset, column_list=None, filter_condition_dict=None, dataset_filter_by_data_type=None, duckdb_connection=None, decimal_places=2)

Calculate completeness metrics for specified columns in a dataset using DuckDB.

This function calculates the fraction of non-null values in specified columns of a dataset. It supports filtering by column names and/or data types, and can apply additional filter conditions before calculating completeness.

Example

Consider a column 'email' with values: ["user@example.com", None, "test@test.com", None, "mail@domain.com"]

Completeness calculation: - Non-null values: 3 - Total values: 5 - Completeness percentage = (3/5) * 100 = 60.00%

Returns:

Type Description
List[Dict[str, Union[str, int, float, dict, None]]]

List[Dict[str, Union[str, int, float, dict, None]]]: A list of dictionaries with the following keys: - column_name (str): Name of the analyzed column - non_null_count (int): Count of non-null values - total_count (int): Total count of values - completeness_percentage (float): Percentage of non-null values - table_name (str): Name of the analyzed table - execution_timestamp_utc (str): Timestamp of execution in UTC - filter_conditions (dict|None): Applied filter conditions if any - filtered_by_data_type (list|None): Data types used for filtering if any

Parameters:

Name Type Description Default
dataset Any

Input dataset that can be either: - A DataFrame (pandas, polars) or other DuckDB-compatible data structure - A string representing an existing table name in the DuckDB connection

required
column_list Optional[List[str]]

List of column names to analyze. Can be used together with dataset_filter_by_data_type. Defaults to None.

None
filter_condition_dict Optional[Dict[str, Union[str, int, float]]]

Dictionary of filter conditions to apply before calculating completeness. Format: {'column_name': value}. Supports string, integer, and float values.

None
dataset_filter_by_data_type Optional[List[str]]

Data type(s) to filter columns. Can be a single type as string or list of types. Can be used together with column_list.

None
duckdb_connection Optional[DuckDBPyConnection]

Existing DuckDB connection. If None, a new connection will be created and closed after execution.

None
decimal_places int

Number of decimal places to round the completeness percentage. Defaults to 2.

2
Source code in src/whistlingduck/analyzers/Completeness.py
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def Completeness(dataset: Any, 
                column_list: Optional[List[str]] = None, 
                filter_condition_dict: Optional[Dict[str, Union[str, int, float]]] = None,
                dataset_filter_by_data_type: Optional[List[str]] = None,
                duckdb_connection: Optional[DuckDBPyConnection] = None,
                decimal_places: int = 2
               ) -> List[Dict[str, Union[str, int, float, dict, None]]]:
    """
    Calculate completeness metrics for specified columns in a dataset using DuckDB.

    This function calculates the fraction of non-null values in specified columns of a dataset.
    It supports filtering by column names and/or data types, and can apply additional filter
    conditions before calculating completeness.

    Example:
        Consider a column 'email' with values: ["user@example.com", None, "test@test.com", None, "mail@domain.com"]

        Completeness calculation:
        - Non-null values: 3
        - Total values: 5
        - Completeness percentage = (3/5) * 100 = 60.00%

    Returns:
        List[Dict[str, Union[str, int, float, dict, None]]]: A list of dictionaries with the following keys:
            - column_name (str): Name of the analyzed column
            - non_null_count (int): Count of non-null values
            - total_count (int): Total count of values
            - completeness_percentage (float): Percentage of non-null values
            - table_name (str): Name of the analyzed table
            - execution_timestamp_utc (str): Timestamp of execution in UTC
            - filter_conditions (dict|None): Applied filter conditions if any
            - filtered_by_data_type (list|None): Data types used for filtering if any

    Args:
        dataset (Any): Input dataset that can be either:
            - A DataFrame (pandas, polars) or other DuckDB-compatible data structure
            - A string representing an existing table name in the DuckDB connection

        column_list (Optional[List[str]], optional): List of column names to analyze.
            Can be used together with dataset_filter_by_data_type. Defaults to None.

        filter_condition_dict (Optional[Dict[str, Union[str, int, float]]], optional):
            Dictionary of filter conditions to apply before calculating completeness.
            Format: {'column_name': value}. Supports string, integer, and float values.

        dataset_filter_by_data_type (Optional[List[str]], optional): 
            Data type(s) to filter columns. Can be a single type as string or list of types.
            Can be used together with column_list.

        duckdb_connection (Optional[DuckDBPyConnection], optional): Existing DuckDB connection.
            If None, a new connection will be created and closed after execution.

        decimal_places (int, optional): Number of decimal places to round the completeness
            percentage. Defaults to 2.
    """

    if decimal_places < 0:
        raise ValueError("decimal_places must be non-negative")

    # Generate UUID for table name and get UTC timestamp
    unique_id = str(uuid.uuid4()).replace('-', '_')
    timestamp = datetime.now(timezone.utc)
    temp_table_name = f"completeness_{unique_id}"

    if column_list is None and dataset_filter_by_data_type is None:
        raise ValueError(
            "Please provide either a list of columns using column_list or specify "
            "data type(s) using dataset_filter_by_data_type."
        )

    # Handle DuckDB connection and table registration
    if duckdb_connection is None:
        con = duckdb.connect()
        try:
            con.register(temp_table_name, dataset)
            source_table = temp_table_name
        except Exception as e:
            con.close()
            raise ValueError(f"Failed to register dataset: {str(e)}. Please ensure the dataset is in a DuckDB-compatible format.")
    else:
        con = duckdb_connection
        if isinstance(dataset, str):
            try:
                con.sql(f"PRAGMA table_info('{dataset}')")
                source_table = dataset
            except duckdb.CatalogException:
                raise ValueError(f"Table '{dataset}' does not exist in the DuckDB connection")
        else:
            try:
                con.register(temp_table_name, dataset)
                source_table = temp_table_name
            except Exception as e:
                raise ValueError(
                    f"Failed to register dataset with existing connection: {str(e)}. "
                    "Please ensure the dataset is in a DuckDB-compatible format."
                )

    # Get table info
    dtype_info = con.sql(f"PRAGMA table_info('{source_table}')").pl()
    dataset_columns = dtype_info['name'].to_list()

    # Initialize final column list
    final_column_list = set()

    # Validate column list if provided
    if column_list:
        if not isinstance(column_list, list):
            raise ValueError(
                "column_list must be a list of strings. "
                "For single column, use ['column_name'] instead of 'column_name'."
            )
        invalid_cols = set(column_list) - set(dataset_columns)
        if invalid_cols:
            raise ValueError(
                f"These columns were not found in the dataset: {', '.join(invalid_cols)}. "
                "Please verify the column names."
            )
        final_column_list.update(column_list)

    # Handle data type filtering
    if dataset_filter_by_data_type:
        if not isinstance(dataset_filter_by_data_type, list):
            raise ValueError(
                "dataset_filter_by_data_type must be a list of strings. "
                "For single data type, use ['VARCHAR'] instead of 'VARCHAR'."
            )

        data_type_columns = dtype_info.filter(
            pl.col("type").str.to_uppercase().is_in([dt.upper() for dt in dataset_filter_by_data_type])
        )['name'].to_list()

        if not data_type_columns:
            raise ValueError(
                f"We couldn't find any columns of types {dataset_filter_by_data_type}. "
                "You might want to check the data types or consider specifying columns directly using column_list."
            )

        final_column_list.update(data_type_columns)

    # Convert set back to list
    final_column_list = list(final_column_list)

    # Handle filter conditions
    if filter_condition_dict:
        if not isinstance(filter_condition_dict, dict):
            raise ValueError(
                "filter_condition_dict must be a dictionary. "
                "For single filter condition, use {'column_name': value} instead of a single value."
            )
        invalid_filter_cols = list(set(filter_condition_dict.keys()) - set(dataset_columns))
        if invalid_filter_cols:
            raise ValueError(
                f"We couldn't find these columns in your dataset: {', '.join(invalid_filter_cols)}. "
                "Please verify the column names in your filter conditions."
            )

        where_clause = "WHERE " + " AND ".join(
            f"{col} = '{val}'" if isinstance(val, str) else f"{col} = {val}"
            for col, val in filter_condition_dict.items()
        )
    else:
        where_clause = ""

    # Generate SQL queries for completeness calculation
    sql_statements = [
        f"""
        SELECT 
            '{column}' as column_name,
            COUNT(CASE WHEN {column} IS NOT NULL THEN 1 END) as non_null_count,
            COUNT(*) as total_count,
            ROUND(COUNT(CASE WHEN {column} IS NOT NULL THEN 1 END) * 100.0 / NULLIF(COUNT(*), 0), {decimal_places}) as completeness_percentage
        FROM {source_table}
        {where_clause}
        """
        for column in final_column_list
    ]

    sql_query = " UNION ALL ".join(sql_statements)
    result = con.sql(sql_query).pl()

    if duckdb_connection is None:
        con.close()

    # Format results
    results = result.select([
        pl.col('column_name'),
        pl.col('non_null_count').cast(pl.Int64),
        pl.col('total_count').cast(pl.Int64),
        pl.col('completeness_percentage').cast(pl.Float64)
    ]).to_dicts()

    # Add metadata to results
    for result in results:
        result.update({
            'table_name': source_table,
            'execution_timestamp_utc': timestamp.strftime("%Y-%m-%d %H:%M:%S"),
            'filter_conditions': filter_condition_dict if filter_condition_dict else None,
            'filtered_by_data_type': dataset_filter_by_data_type if dataset_filter_by_data_type else None
        })

    return results