Skip to content

Entropy

Entropy(dataset, column_list=None, filter_condition_dict=None, dataset_filter_by_data_type=None, duckdb_connection=None, decimal_places=2)

Calculate entropy metrics for specified columns in a dataset using DuckDB.

This function calculates the information entropy of values in specified columns using DuckDB's built-in entropy function. Entropy measures the average level of "information" or "uncertainty" inherent in the column's values. Higher entropy indicates more uniform distribution of values, while lower entropy indicates more concentrated values.

Example

Consider a column 'category' with values: ["A", "A", "B", "B", "C"] The entropy value would reflect how evenly distributed these values are.

Returns:

Type Description
List[Dict[str, Union[str, float, dict, None]]]

List[Dict[str, Union[str, float, dict, None]]]: A list of dictionaries with the following keys: - column_name (str): Name of the analyzed column - entropy_value (float): Calculated entropy value - table_name (str): Name of the analyzed table - execution_timestamp_utc (str): Timestamp of execution in UTC - filter_conditions (dict|None): Applied filter conditions if any - filtered_by_data_type (list|None): Data types used for filtering if any

Parameters:

Name Type Description Default
dataset Any

Input dataset that can be either: - A DataFrame (pandas, polars) or other DuckDB-compatible data structure - A string representing an existing table name in the DuckDB connection

required
column_list Optional[List[str]]

List of column names to analyze. Can be used together with dataset_filter_by_data_type. Defaults to None.

None
filter_condition_dict Optional[Dict[str, Union[str, int, float]]]

Dictionary of filter conditions to apply before calculating entropy. Format: {'column_name': value}. Supports string, integer, and float values. Defaults to None.

None
dataset_filter_by_data_type Optional[List[str]]

Data type(s) to filter columns. Can be used together with column_list. The function will analyze all columns of these data types. Defaults to None.

None
duckdb_connection Optional[DuckDBPyConnection]

Existing DuckDB connection. If None, a new connection will be created and closed after execution. Defaults to None.

None
decimal_places int

Number of decimal places to round the entropy value. Defaults to 2.

2
Source code in src/whistlingduck/analyzers/Entropy.py
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def Entropy(dataset: Any,
           column_list: Optional[List[str]] = None,
           filter_condition_dict: Optional[Dict[str, Union[str, int, float]]] = None,
           dataset_filter_by_data_type: Optional[List[str]] = None,
           duckdb_connection: Optional[DuckDBPyConnection] = None,
           decimal_places: int = 2
          ) -> List[Dict[str, Union[str, float, dict, None]]]:
    """
    Calculate entropy metrics for specified columns in a dataset using DuckDB.

    This function calculates the information entropy of values in specified columns using DuckDB's
    built-in entropy function. Entropy measures the average level of "information" or "uncertainty" 
    inherent in the column's values. Higher entropy indicates more uniform distribution of values, 
    while lower entropy indicates more concentrated values.

    Example:
        Consider a column 'category' with values: ["A", "A", "B", "B", "C"]
        The entropy value would reflect how evenly distributed these values are.

    Returns:
        List[Dict[str, Union[str, float, dict, None]]]: A list of dictionaries with the following keys:
            - column_name (str): Name of the analyzed column
            - entropy_value (float): Calculated entropy value
            - table_name (str): Name of the analyzed table
            - execution_timestamp_utc (str): Timestamp of execution in UTC
            - filter_conditions (dict|None): Applied filter conditions if any
            - filtered_by_data_type (list|None): Data types used for filtering if any

    Args:
        dataset (Any): Input dataset that can be either:
            - A DataFrame (pandas, polars) or other DuckDB-compatible data structure
            - A string representing an existing table name in the DuckDB connection

        column_list (Optional[List[str]], optional): List of column names to analyze.
            Can be used together with dataset_filter_by_data_type. Defaults to None.

        filter_condition_dict (Optional[Dict[str, Union[str, int, float]]], optional):
            Dictionary of filter conditions to apply before calculating entropy.
            Format: {'column_name': value}. Supports string, integer, and float values.
            Defaults to None.

        dataset_filter_by_data_type (Optional[List[str]], optional): 
            Data type(s) to filter columns. Can be used together with column_list.
            The function will analyze all columns of these data types.
            Defaults to None.

        duckdb_connection (Optional[DuckDBPyConnection], optional): Existing DuckDB connection.
            If None, a new connection will be created and closed after execution.
            Defaults to None.

        decimal_places (int, optional): Number of decimal places to round the entropy value.
            Defaults to 2.
    """

    if decimal_places < 0:
        raise ValueError("decimal_places must be non-negative")

    unique_id = str(uuid.uuid4()).replace('-', '_')
    timestamp = datetime.now(timezone.utc)
    temp_table_name = f"entropy_{unique_id}"

    if column_list is None and dataset_filter_by_data_type is None:
        raise ValueError(
            "Please provide either a list of columns using column_list or specify "
            "data type(s) using dataset_filter_by_data_type."
        )

    if duckdb_connection is None:
        con = duckdb.connect()
        try:
            con.register(temp_table_name, dataset)
            source_table = temp_table_name
        except Exception as e:
            con.close()
            raise ValueError(f"Failed to register dataset: {str(e)}")
    else:
        con = duckdb_connection
        if isinstance(dataset, str):
            try:
                con.sql(f"PRAGMA table_info('{dataset}')")
                source_table = dataset
            except duckdb.CatalogException:
                raise ValueError(f"Table '{dataset}' does not exist in the DuckDB connection")
        else:
            try:
                con.register(temp_table_name, dataset)
                source_table = temp_table_name
            except Exception as e:
                raise ValueError(f"Failed to register dataset with existing connection: {str(e)}")

    dtype_info = con.sql(f"PRAGMA table_info('{source_table}')").pl()
    dataset_columns = dtype_info['name'].to_list()

    final_column_list = set()

    if column_list:
        if not isinstance(column_list, list):
            raise ValueError("column_list must be a list of strings")
        invalid_cols = set(column_list) - set(dataset_columns)
        if invalid_cols:
            raise ValueError(f"These columns were not found in the dataset: {', '.join(invalid_cols)}")
        final_column_list.update(column_list)

    if dataset_filter_by_data_type:
        if not isinstance(dataset_filter_by_data_type, list):
            raise ValueError("dataset_filter_by_data_type must be a list of strings")

        data_type_columns = dtype_info.filter(
            pl.col("type").str.to_uppercase().is_in([dt.upper() for dt in dataset_filter_by_data_type])
        )['name'].to_list()

        if not data_type_columns:
            raise ValueError(f"No columns found of types {dataset_filter_by_data_type}")

        final_column_list.update(data_type_columns)

    final_column_list = list(final_column_list)

    if filter_condition_dict:
        if not isinstance(filter_condition_dict, dict):
            raise ValueError("filter_condition_dict must be a dictionary")
        invalid_filter_cols = list(set(filter_condition_dict.keys()) - set(dataset_columns))
        if invalid_filter_cols:
            raise ValueError(f"These columns were not found in your dataset: {', '.join(invalid_filter_cols)}")

        where_clause = "WHERE " + " AND ".join(
            f"{col} = '{val}'" if isinstance(val, str) else f"{col} = {val}"
            for col, val in filter_condition_dict.items()
        )
    else:
        where_clause = ""

    # First create the aggregated counts for each group
    sql_statements = [
        f"""
        SELECT 
            '{column}' as column_name,
            ROUND(entropy(normalized_count), {decimal_places}) as entropy_value
        FROM (
            SELECT 
                {column},
                CAST(COUNT(*) AS DOUBLE) / CAST(SUM(COUNT(*)) OVER() AS DOUBLE) as normalized_count
            FROM {source_table}
            {where_clause}
            GROUP BY {column}
        )
        """
        for column in final_column_list
    ]

    sql_query = " UNION ALL ".join(sql_statements)
    result = con.sql(sql_query).pl()

    if duckdb_connection is None:
        con.close()

    results = result.select([
        pl.col('column_name'),
        pl.col('entropy_value').cast(pl.Float64)
    ]).to_dicts()

    for result in results:
        result.update({
            'table_name': source_table,
            'execution_timestamp_utc': timestamp.strftime("%Y-%m-%d %H:%M:%S"),
            'filter_conditions': filter_condition_dict if filter_condition_dict else None,
            'filtered_by_data_type': dataset_filter_by_data_type if dataset_filter_by_data_type else None
        })

    return results