Skip to content

MaxLength

MaxLength(dataset, column_list=None, filter_condition_dict=None, dataset_filter_by_data_type=None, duckdb_connection=None, null_behavior=NullBehavior.IGNORE)

Calculate maximum string length for specified columns using DuckDB.

This function analyzes the length of string values in specified columns by calculating the maximum length of each string. It can filter columns by explicitly provided column names AND/OR by data type(s). The function only processes string-type columns (VARCHAR, STRING, TEXT, CHAR, CHARACTER VARYING) and provides different behaviors for handling NULL values.

Example

Consider a column 'products' with values: ["apple", "banana", "", "orange juice", None]

Maximum length calculation with different null_behavior: - IGNORE: Ignores NULL values, returns max length 11 (from "orange juice") - EMPTY_STRING: Treats NULL as empty string (length 0), returns max length 11 - FAIL: Raises an error due to NULL value presence

Returns:

Type Description
List[Dict[str, Union[str, int, float, dict, None]]]

List[Dict[str, Union[str, int, float, dict, None]]]: A list of dictionaries with the following keys: - column_name (str): Name of the analyzed column - max_length (int): Maximum string length found in the column - table_name (str): Name of the analyzed table - execution_timestamp_utc (str): Timestamp of execution in UTC - filter_conditions (dict|None): Applied filter conditions if any - filtered_by_data_type (list|None): Data types used for filtering if any - null_behavior (str): The null handling strategy used ('ignore', 'empty_string', or 'fail')

Parameters:

Name Type Description Default
dataset Any

Input dataset that can be either: - A DataFrame (pandas, polars) or other DuckDB-compatible data structure - A string representing an existing table name in the DuckDB connection When providing a DataFrame along with duckdb_connection, the DataFrame will be registered as a temporary table in that connection.

required
column_list Optional[List[str]]

List of column names to analyze. Can be used together with dataset_filter_by_data_type. Only string-type columns from this list will be processed. Defaults to None.

None
filter_condition_dict Optional[Dict[str, Union[str, int, float]]]

Dictionary of filter conditions to apply before calculating string lengths. Format: {'column_name': value}. Supports string, integer, and float values. Example: {'category': 'electronics', 'status': 'active'}. Defaults to None.

None
dataset_filter_by_data_type Optional[List[str]]

Data type(s) to filter columns. Can be a single type as string or list of types. Can be used together with column_list. The function will analyze all string-type columns that match these data types. Case-insensitive. Defaults to None. Example: ['VARCHAR'] or ['VARCHAR', 'TEXT']

None
duckdb_connection Optional[DuckDBPyConnection]

Existing DuckDB connection. If None, a new connection will be created and closed after execution. Can be used with either a table name string or a DataFrame input. Defaults to None.

None
null_behavior NullBehavior

Specifies how NULL values should be handled: - IGNORE: Skip NULL values when calculating maximum length - EMPTY_STRING: Treat NULL values as empty strings (length 0) - FAIL: Raise an error if any NULL values are found Defaults to NullBehavior.IGNORE.

IGNORE

Raises:

Type Description
ValueError

In the following cases: - Neither column_list nor dataset_filter_by_data_type is provided - Invalid column names in column_list or filter_condition_dict - No columns match the specified data types - NULL values found when null_behavior is set to FAIL - Failed to register or access the dataset

Source code in src/whistlingduck/analyzers/MaxLength.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def MaxLength(dataset: Any,
             column_list: Optional[List[str]] = None,
             filter_condition_dict: Optional[Dict[str, Union[str, int, float]]] = None,
             dataset_filter_by_data_type: Optional[List[str]] = None,
             duckdb_connection: Optional[DuckDBPyConnection] = None,
             null_behavior: NullBehavior = NullBehavior.IGNORE
            ) -> List[Dict[str, Union[str, int, float, dict, None]]]:
    """
    Calculate maximum string length for specified columns using DuckDB.

    This function analyzes the length of string values in specified columns by calculating
    the maximum length of each string. It can filter columns by explicitly provided column 
    names AND/OR by data type(s). The function only processes string-type columns (VARCHAR, 
    STRING, TEXT, CHAR, CHARACTER VARYING) and provides different behaviors for handling NULL values.

    Example:
        Consider a column 'products' with values: ["apple", "banana", "", "orange juice", None]

        Maximum length calculation with different null_behavior:
        - IGNORE: Ignores NULL values, returns max length 11 (from "orange juice")
        - EMPTY_STRING: Treats NULL as empty string (length 0), returns max length 11
        - FAIL: Raises an error due to NULL value presence

    Returns:
        List[Dict[str, Union[str, int, float, dict, None]]]: A list of dictionaries with the following keys:
            - column_name (str): Name of the analyzed column
            - max_length (int): Maximum string length found in the column
            - table_name (str): Name of the analyzed table
            - execution_timestamp_utc (str): Timestamp of execution in UTC
            - filter_conditions (dict|None): Applied filter conditions if any
            - filtered_by_data_type (list|None): Data types used for filtering if any
            - null_behavior (str): The null handling strategy used ('ignore', 'empty_string', or 'fail')

    Args:
        dataset (Any): Input dataset that can be either:
            - A DataFrame (pandas, polars) or other DuckDB-compatible data structure
            - A string representing an existing table name in the DuckDB connection
            When providing a DataFrame along with duckdb_connection, the DataFrame will be
            registered as a temporary table in that connection.

        column_list (Optional[List[str]], optional): List of column names to analyze.
            Can be used together with dataset_filter_by_data_type. Only string-type
            columns from this list will be processed. Defaults to None.

        filter_condition_dict (Optional[Dict[str, Union[str, int, float]]], optional): 
            Dictionary of filter conditions to apply before calculating string lengths.
            Format: {'column_name': value}. Supports string, integer, and float values.
            Example: {'category': 'electronics', 'status': 'active'}. Defaults to None.

        dataset_filter_by_data_type (Optional[List[str]], optional): 
            Data type(s) to filter columns. Can be a single type as string or list of types.
            Can be used together with column_list. The function will analyze all string-type
            columns that match these data types. Case-insensitive. Defaults to None.
            Example: ['VARCHAR'] or ['VARCHAR', 'TEXT']

        duckdb_connection (Optional[DuckDBPyConnection], optional): Existing DuckDB connection.
            If None, a new connection will be created and closed after execution.
            Can be used with either a table name string or a DataFrame input.
            Defaults to None.

        null_behavior (NullBehavior, optional): Specifies how NULL values should be handled:
            - IGNORE: Skip NULL values when calculating maximum length
            - EMPTY_STRING: Treat NULL values as empty strings (length 0)
            - FAIL: Raise an error if any NULL values are found
            Defaults to NullBehavior.IGNORE.

    Raises:
        ValueError: In the following cases:
            - Neither column_list nor dataset_filter_by_data_type is provided
            - Invalid column names in column_list or filter_condition_dict
            - No columns match the specified data types
            - NULL values found when null_behavior is set to FAIL
            - Failed to register or access the dataset
    """
    unique_id = str(uuid.uuid4()).replace('-', '_')
    timestamp = datetime.now(timezone.utc)
    temp_table_name = f"maxlength_{unique_id}"

    if column_list is None and dataset_filter_by_data_type is None:
        raise ValueError(
            "Please provide either column_list or dataset_filter_by_data_type."
        )

    # Handle DuckDB connection
    if duckdb_connection is None:
        con = duckdb.connect()
        try:
            con.register(temp_table_name, dataset)
            source_table = temp_table_name
        except Exception as e:
            con.close()
            raise ValueError(f"Failed to register dataset: {str(e)}")
    else:
        con = duckdb_connection
        if isinstance(dataset, str):
            try:
                con.sql(f"PRAGMA table_info('{dataset}')")
                source_table = dataset
            except duckdb.CatalogException:
                raise ValueError(f"Table '{dataset}' does not exist")
        else:
            try:
                con.register(temp_table_name, dataset)
                source_table = temp_table_name
            except Exception as e:
                raise ValueError(f"Failed to register dataset: {str(e)}")

    # Get table info and validate columns
    dtype_info = con.sql(f"PRAGMA table_info('{source_table}')").pl()
    dataset_columns = dtype_info['name'].to_list()

    # Filter for string/varchar columns only
    string_types = ['VARCHAR', 'STRING', 'TEXT', 'CHAR', 'CHARACTER VARYING']
    string_columns = dtype_info.filter(
        pl.col("type").str.to_uppercase().is_in([t.upper() for t in string_types])
    )['name'].to_list()

    final_column_list = set()

    if column_list:
        if not isinstance(column_list, list):
            raise ValueError("column_list must be a list of strings")
        invalid_cols = set(column_list) - set(dataset_columns)
        if invalid_cols:
            raise ValueError(f"Columns not found: {', '.join(invalid_cols)}")
        # Only include string columns from column_list
        final_column_list.update(set(column_list) & set(string_columns))

    if dataset_filter_by_data_type:
        if not isinstance(dataset_filter_by_data_type, list):
            raise ValueError("dataset_filter_by_data_type must be a list")

        upper_types = [dt.upper() for dt in dataset_filter_by_data_type]
        # Add any string types that were specifically requested
        if any(t in upper_types for t in [t.upper() for t in string_types]):
            data_type_columns = dtype_info.filter(
                pl.col("type").str.to_uppercase().is_in(upper_types)
            )['name'].to_list()

            if not data_type_columns:
                raise ValueError(
                    f"No columns found of types {dataset_filter_by_data_type}"
                )

            final_column_list.update(set(data_type_columns) & set(string_columns))

    final_column_list = list(final_column_list)

    if not final_column_list:
        return []  # Return empty list if no string columns to process

    # Handle filter conditions
    if filter_condition_dict:
        if not isinstance(filter_condition_dict, dict):
            raise ValueError("filter_condition_dict must be a dictionary")
        invalid_filter_cols = set(filter_condition_dict.keys()) - set(dataset_columns)
        if invalid_filter_cols:
            raise ValueError(f"Filter columns not found: {', '.join(invalid_filter_cols)}")

        where_clause = "WHERE " + " AND ".join(
            f"{col} = '{val}'" if isinstance(val, str) else f"{col} = {val}"
            for col, val in filter_condition_dict.items()
        )
    else:
        where_clause = ""

    # Generate SQL based on null behavior
    length_expressions = {
        NullBehavior.IGNORE: "LENGTH({column})",
        NullBehavior.EMPTY_STRING: "COALESCE(LENGTH({column}), 0)",
        NullBehavior.FAIL: """
            CASE 
                WHEN COUNT(*) FILTER (WHERE {column} IS NULL) > 0 
                THEN error('NULL values not allowed') 
                ELSE MAX(LENGTH({column})) 
            END
        """
    }

    length_expr = length_expressions[null_behavior]

    # For FAIL behavior, we need to check for NULLs first
    if null_behavior == NullBehavior.FAIL:
        for column in final_column_list:
            check_nulls = f"""
                SELECT COUNT(*) as null_count
                FROM {source_table}
                {where_clause}
                WHERE {column} IS NULL
            """
            null_count = con.sql(check_nulls).fetchone()[0]
            if null_count > 0:
                raise ValueError("NULL values found when null_behavior is set to FAIL")

    sql_statements = [
        f"""
        SELECT 
            '{column}' as column_name,
            MAX({length_expr.format(column=column)}) as max_length
        FROM {source_table}
        {where_clause}
        """
        for column in final_column_list
    ]

    sql_query = " UNION ALL ".join(sql_statements)

    try:
        result = con.sql(sql_query).pl()
    except Exception as e:
        raise e

    if duckdb_connection is None:
        con.close()

    results = result.select([
        pl.col('column_name'),
        pl.col('max_length').cast(pl.Int64)
    ]).to_dicts()

    for result in results:
        result.update({
            'table_name': source_table,
            'execution_timestamp_utc': timestamp.strftime("%Y-%m-%d %H:%M:%S"),
            'filter_conditions': filter_condition_dict if filter_condition_dict else None,
            'filtered_by_data_type': dataset_filter_by_data_type if dataset_filter_by_data_type else None,
            'null_behavior': null_behavior.value
        })

    return results