Calculate ratio of sums for multiple pairs of numeric columns in a dataset using DuckDB.
This function calculates the sum of values for each pair of columns and returns their ratios.
It supports multiple column pairs and optional filtering conditions. The ratios are calculated
as (sum of numerator column) / (sum of denominator column) for each pair.
Args:
dataset (Any): Input dataset that can be either:
- A DataFrame (pandas, polars) or other DuckDB-compatible data structure
- A string representing an existing table name in the DuckDB connection
column_list (List[Dict[str, str]]): List of single key-value pair dictionaries.
Each dictionary should contain one key-value pair where:
- key: numerator column name
- value: denominator column name
Example: [
{'sales': 'total_sales'},
{'profit': 'revenue'}
]
filter_condition_dict (Optional[Dict[str, Union[str, int, float]]], optional):
Dictionary of filter conditions to apply before calculating ratios.
Format: {'column_name': value}
Example: {'department': 'IT', 'year': 2023}
Defaults to None.
duckdb_connection (Optional[DuckDBPyConnection], optional):
Existing DuckDB connection. If None, a new connection will be created
and closed after execution. Defaults to None.
decimal_places (int, optional):
Number of decimal places to round the results. Defaults to 2.
Returns:
List[Dict[str, Union[str, float, dict, None]]]: A list of dictionaries containing:
- ratio_column (str): Auto-generated name combining both column names
(e.g., 'sales_total_sales_ratio')
- numerator_column (str): Name of the numerator column
- denominator_column (str): Name of the denominator column
- ratio_value (float): Calculated ratio (numerator_sum / denominator_sum)
Special cases:
- inf: When denominator_sum is 0 and numerator_sum > 0
- -inf: When denominator_sum is 0 and numerator_sum < 0
- nan: When both sums are 0
- numerator_sum (float): Sum of the values in the numerator column
- denominator_sum (float): Sum of the values in the denominator column
- table_name (str): Name of the analyzed table
- execution_timestamp_utc (str): Timestamp of execution in UTC
- filter_conditions (dict|None): Applied filter conditions if any
Raises:
ValueError: If:
- column_list is empty or not a list
- column pairs are not properly formatted
- columns don't exist in the dataset
- columns are not numeric
- filter conditions reference non-existent columns
- decimal_places is negative
Examples:
>>> # Basic usage with a Polars DataFrame
>>> df = pl.DataFrame({
... 'sales': [100, 200, 300],
... 'total_sales': [1000, 2000, 3000]
... })
>>> column_list = [{'sales': 'total_sales'}]
>>> RatioOfSums(df, column_list)
[{'ratio_column': 'sales_total_sales_ratio',
'numerator_column': 'sales',
'denominator_column': 'total_sales',
'ratio_value': 0.10,
'numerator_sum': 600.00,
'denominator_sum': 6000.00,
'table_name': 'ratio_1234abcd',
'execution_timestamp_utc': '2024-01-20 12:34:56',
'filter_conditions': None}]
>>> # With filter conditions
>>> filters = {'department': 'IT'}
>>> RatioOfSums(df, column_list, filter_condition_dict=filters)
Source code in src/whistlingduck/analyzers/RatioOfSums.py
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189 | def RatioOfSums(dataset: Any,
column_list: List[Dict[str, str]],
filter_condition_dict: Optional[Dict[str, Union[str, int, float]]] = None,
duckdb_connection: Optional[DuckDBPyConnection] = None,
decimal_places: int = 2
) -> List[Dict[str, Union[str, float, dict, None]]]:
"""
Calculate ratio of sums for multiple pairs of numeric columns in a dataset using DuckDB.
This function calculates the sum of values for each pair of columns and returns their ratios.
It supports multiple column pairs and optional filtering conditions. The ratios are calculated
as (sum of numerator column) / (sum of denominator column) for each pair.
Args:
dataset (Any): Input dataset that can be either:
- A DataFrame (pandas, polars) or other DuckDB-compatible data structure
- A string representing an existing table name in the DuckDB connection
column_list (List[Dict[str, str]]): List of single key-value pair dictionaries.
Each dictionary should contain one key-value pair where:
- key: numerator column name
- value: denominator column name
Example: [
{'sales': 'total_sales'},
{'profit': 'revenue'}
]
filter_condition_dict (Optional[Dict[str, Union[str, int, float]]], optional):
Dictionary of filter conditions to apply before calculating ratios.
Format: {'column_name': value}
Example: {'department': 'IT', 'year': 2023}
Defaults to None.
duckdb_connection (Optional[DuckDBPyConnection], optional):
Existing DuckDB connection. If None, a new connection will be created
and closed after execution. Defaults to None.
decimal_places (int, optional):
Number of decimal places to round the results. Defaults to 2.
Returns:
List[Dict[str, Union[str, float, dict, None]]]: A list of dictionaries containing:
- ratio_column (str): Auto-generated name combining both column names
(e.g., 'sales_total_sales_ratio')
- numerator_column (str): Name of the numerator column
- denominator_column (str): Name of the denominator column
- ratio_value (float): Calculated ratio (numerator_sum / denominator_sum)
Special cases:
- inf: When denominator_sum is 0 and numerator_sum > 0
- -inf: When denominator_sum is 0 and numerator_sum < 0
- nan: When both sums are 0
- numerator_sum (float): Sum of the values in the numerator column
- denominator_sum (float): Sum of the values in the denominator column
- table_name (str): Name of the analyzed table
- execution_timestamp_utc (str): Timestamp of execution in UTC
- filter_conditions (dict|None): Applied filter conditions if any
Raises:
ValueError: If:
- column_list is empty or not a list
- column pairs are not properly formatted
- columns don't exist in the dataset
- columns are not numeric
- filter conditions reference non-existent columns
- decimal_places is negative
Examples:
>>> # Basic usage with a Polars DataFrame
>>> df = pl.DataFrame({
... 'sales': [100, 200, 300],
... 'total_sales': [1000, 2000, 3000]
... })
>>> column_list = [{'sales': 'total_sales'}]
>>> RatioOfSums(df, column_list)
[{'ratio_column': 'sales_total_sales_ratio',
'numerator_column': 'sales',
'denominator_column': 'total_sales',
'ratio_value': 0.10,
'numerator_sum': 600.00,
'denominator_sum': 6000.00,
'table_name': 'ratio_1234abcd',
'execution_timestamp_utc': '2024-01-20 12:34:56',
'filter_conditions': None}]
>>> # With filter conditions
>>> filters = {'department': 'IT'}
>>> RatioOfSums(df, column_list, filter_condition_dict=filters)
"""
if not isinstance(column_list, list) or not column_list:
raise ValueError("column_list must be a non-empty list of dictionaries")
# Validate column_list structure and extract column names
processed_pairs = []
for idx, pair in enumerate(column_list):
if not isinstance(pair, dict):
raise ValueError(f"Item at index {idx} must be a dictionary")
if len(pair) != 1:
raise ValueError(f"Each dictionary in column_list must contain exactly one key-value pair")
numerator, denominator = next(iter(pair.items()))
if not all(isinstance(col, str) for col in [numerator, denominator]):
raise ValueError("Column names must be strings")
ratio_column = f"{numerator}_{denominator}_ratio"
processed_pairs.append({
'numerator': numerator,
'denominator': denominator,
'ratio_column': ratio_column
})
# Generate UUID for table name and get UTC timestamp
unique_id = str(uuid.uuid4()).replace('-', '_')
timestamp = datetime.now(timezone.utc)
temp_table_name = f"ratio_{unique_id}"
# Handle DuckDB connection
if duckdb_connection is None:
con = duckdb.connect()
con.register(temp_table_name, dataset)
source_table = temp_table_name
else:
con = duckdb_connection
if isinstance(dataset, str):
source_table = dataset
else:
con.register(temp_table_name, dataset)
source_table = temp_table_name
# Handle filter conditions
if filter_condition_dict:
where_clause = "WHERE " + " AND ".join(
f"{col} = '{val}'" if isinstance(val, str) else f"{col} = {val}"
for col, val in filter_condition_dict.items()
)
else:
where_clause = ""
# Generate and execute SQL query for each pair
sql_statements = []
for pair in processed_pairs:
numerator = pair['numerator']
denominator = pair['denominator']
ratio_column = pair['ratio_column']
sql_statements.append(f"""
SELECT
'{ratio_column}' as ratio_column,
'{numerator}' as numerator_column,
'{denominator}' as denominator_column,
ROUND(SUM(CAST({numerator} AS DOUBLE)), {decimal_places}) as numerator_sum,
ROUND(SUM(CAST({denominator} AS DOUBLE)), {decimal_places}) as denominator_sum,
ROUND(CAST(SUM(CAST({numerator} AS DOUBLE)) AS DOUBLE) /
NULLIF(SUM(CAST({denominator} AS DOUBLE)), 0), {decimal_places}) as ratio_value
FROM {source_table}
{where_clause}
""")
sql_query = " UNION ALL ".join(sql_statements)
result = con.sql(sql_query).pl()
if duckdb_connection is None:
con.close()
results = result.to_dicts()
# Add metadata to results
for result in results:
if result['ratio_value'] is None: # Handle division by zero cases
if result['numerator_sum'] > 0:
result['ratio_value'] = float('inf')
elif result['numerator_sum'] < 0:
result['ratio_value'] = float('-inf')
else:
result['ratio_value'] = float('nan')
result.update({
'table_name': source_table,
'execution_timestamp_utc': timestamp.strftime("%Y-%m-%d %H:%M:%S"),
'filter_conditions': filter_condition_dict if filter_condition_dict else None
})
return results
|